dim层-商品表设计
设计总线矩阵

开始分析相关的维度表比如商品维度表,如果它们只有个别的事实表需要的维度比如支付方式就可以通过维度退化减少操作减少空间

dim-商品维度的建表语句
DROP TABLE IF EXISTS dim_sku_full;
CREATE EXTERNAL TABLE dim_sku_full
(
`id` STRING COMMENT 'sku_id',
`price` DECIMAL(16, 2) COMMENT '商品价格',
`sku_name` STRING COMMENT '商品名称',
`sku_desc` STRING COMMENT '商品描述',
`weight` DECIMAL(16, 2) COMMENT '重量',
`is_sale` BOOLEAN COMMENT '是否在售',
`spu_id` STRING COMMENT 'spu编号',
`spu_name` STRING COMMENT 'spu名称',
`category3_id` STRING COMMENT '三级分类id',
`category3_name` STRING COMMENT '三级分类名称',
`category2_id` STRING COMMENT '二级分类id',
`category2_name` STRING COMMENT '二级分类名称',
`category1_id` STRING COMMENT '一级分类id',
`category1_name` STRING COMMENT '一级分类名称',
`tm_id` STRING COMMENT '品牌id',
`tm_name` STRING COMMENT '品牌名称',
`sku_attr_values` ARRAY<STRUCT<attr_id :STRING,value_id :STRING,attr_name :STRING,value_name:STRING>> COMMENT '平台属性',
`sku_sale_attr_values` ARRAY<STRUCT<sale_attr_id :STRING,sale_attr_value_id :STRING,sale_attr_name :STRING,sale_attr_value_name:STRING>> COMMENT '销售属性',
`create_time` STRING COMMENT '创建时间'
) COMMENT '商品维度表'
PARTITIONED BY (`dt` STRING)
STORED AS ORC -- ORC 有利于统计分析
LOCATION '/warehouse/gmall/dim/dim_sku_full/'
TBLPROPERTIES ('orc.compress' = 'snappy'); -- ORC 提高压缩速度
表装载语句
with
sku as
(
select
id,
price,
sku_name,
sku_desc,
weight,
is_sale,
spu_id,
category3_id,
tm_id,
create_time
from ods_sku_info_full
where dt='2020-06-14'
),
spu as
(
select
id,
spu_name
from ods_spu_info_full
where dt='2020-06-14'
),
c3 as
(
select
id,
name,
category2_id
from ods_base_category3_full
where dt='2020-06-14'
),
c2 as
(
select
id,
name,
category1_id
from ods_base_category2_full
where dt='2020-06-14'
),
c1 as
(
select
id,
name
from ods_base_category1_full
where dt='2020-06-14'
),
tm as
(
select
id,
tm_name
from ods_base_trademark_full
where dt='2020-06-14'
),
attr as
(
select
sku_id,
collect_set(named_struct('attr_id',attr_id,'value_id',value_id,'attr_name',attr_name,'value_name',value_name)) attrs
from ods_sku_attr_value_full
where dt='2020-06-14'
group by sku_id
),
sale_attr as
(
select
sku_id,
collect_set(named_struct('sale_attr_id',sale_attr_id,'sale_attr_value_id',sale_attr_value_id,'sale_attr_name',sale_attr_name,'sale_attr_value_name',sale_attr_value_name)) sale_attrs
from ods_sku_sale_attr_value_full
where dt='2020-06-14'
group by sku_id
)
insert overwrite table dim_sku_full partition(dt='2020-06-14')
select
sku.id,
sku.price,
sku.sku_name,
sku.sku_desc,
sku.weight,
sku.is_sale,
sku.spu_id,
spu.spu_name,
sku.category3_id,
c3.name,
c3.category2_id,
c2.name,
c2.category1_id,
c1.name,
sku.tm_id,
tm.tm_name,
attr.attrs,
sale_attr.sale_attrs,
sku.create_time
from sku
left join spu on sku.spu_id=spu.id
left join c3 on sku.category3_id=c3.id
left join c2 on c3.category2_id=c2.id
left join c1 on c2.category1_id=c1.id
left join tm on sku.tm_id=tm.id
left join attr on sku.id=attr.sku_id
left join sale_attr on sku.id=sale_attr.sku_id;
注意点CTE(公共表表达式)
select * from ods_sku_attr_value_full 销售多值属性用array[struct]存储,这里使用到列变行函数

select
sku_id,
collect_set(named_struct('attr_id',attr_id,'value_id',value_id,'attr_name',attr_name,'value_name',value_name)) attrs
from ods_sku_attr_value_full
where dt='2020-06-14'
group by sku_id
效果如图
