论文阅读- Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks

Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer

论文地址:https://arxiv.org/abs/1612.03928
github地址:https://github.com/szagoruyko/attention-transfer
published: ICLR 2017

Abstract

student CNN 通过模仿teacher CNN的attention map 来提高性能

Introduction

One of popular hypothesis: There are non-attentional and attentional perception processes.
当进入一个未知场景后,首先是non-attention,Non-attentional processes help to observe a scene in general and gather high-level information。然后, control the attention processes and navigate to a certain part of the scene. This implies that different observers with different knowledge, different goals, and therefore different attentional strategies can literally see the same scene differently.
在这里插入图片描述

本文创新点

在这里插入图片描述

1)activation-based patial attention maps

这个方法能够对网络性能带来一定提升。
在这里插入图片描述
在这里插入图片描述

2)gradient-based patial attention maps

这个方法的效果不大
在这里插入图片描述